fbpx Sea ice microbial communities | LEARNZ

Sea ice microbial communities

Listen: 

The Antarctic sea ice supports a community of microorganisms that play an important part in the Antarctic marine food web. This community is called a Sea Ice Microbial Community or SIMCO.

The Antarctic sea ice is home to a group of simple plants that play an important part in the Antarctic marine food web. This group of plants are known as SIMCO or Sea Ice Microbial Communities.

The frozen seawater of the Antarctic seems like a place where nothing could survive. Yet, within this cold environment a surprising number of microorganisms live. 

A microorganism is a microscopic organism that can only be seen by people with the aid of a microscope. A microorganism may be a single cell or multi-cellular. Microorganisms can live just about anywhere, including soil, hot springs, on the ocean floor, high in the atmosphere and deep inside rocks within the Earth's crust.

Microorganisms are important nutrient recyclers in ecosystems as they act as decomposers. Microorganisms live on the underside of sea ice and include;

SIMCO

Together, these organisms make up the sea-ice microbial community or SIMCO. SIMCO are well adapted to the extreme Antarctic conditions and are important members of the larger sea ice ecosystem. 

What data have scientists gathered to show that SIMCO are an important part of the sea ice ecosystem?

Sea ice as a habitat

Sea ice is an ever changing habitat, shrinking and growing as temperatures rise and fall during different seasons and over longer time scales. 

Because of the high salinity of seawater, new sea ice only begins to form once temperatures in the surface layers of the ocean (the first 100 meters below the surface) dip to –1.8 °C. The first ice crystals that form are known as frazil. As frazil forms, salt is squeezed out of the freezing water, creating a slushy mixture known as brine. Pockets of brine become trapped between ice crystals. However, because salt is denser (heavier) than water, brine is pushed out from the freezing crystals, and slowly drains downward into the bottom layers of sea ice.

Brine is filled with nutrients that attract salt-loving microorganisms. So SIMCO are mostly found in the bottom layer of ice. SIMCO form the foundation of the local food chain, serving as a food source for krill, which are eaten by fish.

Special adaptations

The temperature of sea ice can drop to –35 °C, making it one of the coldest marine habitats on Earth. Although microorganisms do not appear to be able to sustain active growth at such low temperatures, once the ice warms to a cosy –10 or –5 °C, some extreme cold-loving sea ice organisms can grow. 

Microorganisms can become trapped in sea ice as autumn turns to winter. To survive these microorganisms rely on special gel-like coatings, or on dormant structures such as cysts, which stop them from freezing. The gel-like coatings produced by sea-ice microorganisms can also slightly change the sea ice structure which makes it easier for microorganisms to survive.

How could you test the theory that microorganisms living in sea ice produce gel-like coatings to stop them from freezing?

Why are SIMCO important

There are still lots of questions about sea-ice microorganisms. Of particular interest to scientists is understanding how much these microorganisms contribute to the marine ecosystem.  It is thought that if microorganisms make up a significant percentage of biomass in polar ocean environments then all other organisms from algae to whales could be affected if sea ice melts in response to climate change. 

 

The frozen seawater of the Antarctic seems like a place where not many things could live. Yet, this cold place has a surprising amount of plant life living within it.

A microorganism is a tiny plant or animal that can only be seen by people using a microscope. These organisms can be made up of just one cell or have lots of cells.

Microorganisms can live just about anywhere, including soil, hot springs, on the ocean floor, high in the air and deep inside rocks. 

Microorganisms are important because they recycle nutrients by breaking them down.

Microorganisms live on the underside of sea ice in Antarctica and include;

SIMCO

Together, these organisms make up the sea ice microbial community or SIMCO.

SIMCO have adapted (changed over a very long time) to the cold of Antarctica and are an important part of the food web

Living on sea ice

Sea ice is always changing as it melts in summer and grows in winter.

Salt can be forced out of sea ice over time and can collect at the bottom of the sea ice. This salt is full of nutrients that attract salt-loving microorganisms. So SIMCO are mostly found in the bottom layer of ice. SIMCO form the base of the food chain, they are food for krill, which are eaten by fish.

Special adaptations

Below the sea ice in Antarctica it is very cold.  Scientists believe that microorganisms have a special gel-like coating which stops them from freezing. 

How could you test the theory that microorganisms living in sea ice have a coating to stop them from freezing?

Why are SIMCO important

There are still lots of questions about sea ice microorganisms. Scientists want to understand which animals eat these microorganisms and how much they eat. If scientists can answer these questions they will be able to see how other animals like penguins and seals will be affected if the sea ice melts. 

Samoan keywords: 
moana vasa sea
aisa ice
- tiny, microscopic
saienetisi scientist
- food web
aisā frozen
Tongan keywords: 
moana sea
'aisi poloka ice
- tiny, microscopic
- scientist
- food web
poloka frozen
Cook Islands Maori keywords: 
moana sea
aiti ice
- tiny, microscopic
tagata taieni scientist
iri'anga manga food web
toka ia frozen

Find out more about SIMCO and what scientists have discovered about these communities.

Find out more about SIMCO and what scientists have already found out about them.



The undersurface of the pack ice in Antarctica colored green by algae. Antarctic krill can be seen feeding on the ice algae. Image: Kils & Marschall. 

A hole has to be drilled in the sea ice so divers can access the water below the ice. Image: LEARNZ.

All divers are tethered to the surface during a dive below the sea ice for both safety and communication reasons. Image: R.Budd (NIWA) 

Sea ice provides a unique ecosystem for marine plants and animals below the ice